🤗 Upvotes: 52 | cs.CL, cs.AI
Authors:
Essential AI, :, Darsh J Shah, Peter Rushton, Somanshu Singla, Mohit Parmar, Kurt Smith, Yash Vanjani, Ashish Vaswani, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma, Anil Thomas, Anthony Polloreno, Ashish Tanwer, Burhan Drak Sibai, Divya S Mansingka, Divya Shivaprasad, Ishaan Shah, Karl Stratos, Khoi Nguyen, Michael Callahan, Michael Pust, Mrinal Iyer, Philip Monk, Platon Mazarakis, Ritvik Kapila, Saurabh Srivastava, Tim Romanski
Title:
Rethinking Reflection in Pre-Training
Arxiv:
http://arxiv.org/abs/2504.04022v1
Abstract:
A language model's ability to reflect on its own reasoning provides a key advantage for solving complex problems. While most recent research has focused on how this ability develops during reinforcement learning, we show that it actually begins to emerge much earlier - during the model's pre-training. To study this, we introduce deliberate errors into chains-of-thought and test whether the model can still arrive at the correct answer by recognizing and correcting these mistakes. By tracking performance across different stages of pre-training, we observe that this self-correcting ability appears early and improves steadily over time. For instance, an OLMo2-7B model pre-trained on 4 trillion tokens displays self-correction on our six self-reflection tasks.
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art