🤗 Paper Upvotes: 4 | cs.CV, cs.AI, cs.LG, cs.RO
Authors:
Shivam Duggal, Phillip Isola, Antonio Torralba, William T. Freeman
Title:
Adaptive Length Image Tokenization via Recurrent Allocation
Arxiv:
http://arxiv.org/abs/2411.02393v1
Abstract:
Current vision systems typically assign fixed-length representations to images, regardless of the information content. This contrasts with human intelligence - and even large language models - which allocate varying representational capacities based on entropy, context and familiarity. Inspired by this, we propose an approach to learn variable-length token representations for 2D images. Our encoder-decoder architecture recursively processes 2D image tokens, distilling them into 1D latent tokens over multiple iterations of recurrent rollouts. Each iteration refines the 2D tokens, updates the existing 1D latent tokens, and adaptively increases representational capacity by adding new tokens. This enables compression of images into a variable number of tokens, ranging from 32 to 256. We validate our tokenizer using reconstruction loss and FID metrics, demonstrating that token count aligns with image entropy, familiarity and downstream task requirements. Recurrent token processing with increasing representational capacity in each iteration shows signs of token specialization, revealing potential for object / part discovery.
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art