🤗 Paper Upvotes: 14 | cs.LG
Authors:
Zihao Huang, Qiyang Min, Hongzhi Huang, Defa Zhu, Yutao Zeng, Ran Guo, Xun Zhou
Title:
Ultra-Sparse Memory Network
Arxiv:
http://arxiv.org/abs/2411.12364v1
Abstract:
It is widely acknowledged that the performance of Transformer models is exponentially related to their number of parameters and computational complexity. While approaches like Mixture of Experts (MoE) decouple parameter count from computational complexity, they still face challenges in inference due to high memory access costs. This work introduces UltraMem, incorporating large-scale, ultra-sparse memory layer to address these limitations. Our approach significantly reduces inference latency while maintaining model performance. We also investigate the scaling laws of this new architecture, demonstrating that it not only exhibits favorable scaling properties but outperforms traditional models. In our experiments, we train networks with up to 20 million memory slots. The results show that our method achieves state-of-the-art inference speed and model performance within a given computational budget.
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com
Creator:
Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/
Gengyu Wang, LLM ML, http://wanggengyu.com
Listen on:
Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL
Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236
Cover Image by Kawen Kuang https://kawen.art