TalkRL: The Reinforcement Learning Podcast

Nan Jiang takes us deep into Model-based vs Model-free RL, Sim vs Real, Evaluation & Overfitting, RL Theory vs Practice and much more!

Show Notes

Nan Jiang is an Assistant Professor of Computer Science at University of Illinois.  He was a Postdoc Microsoft Research, and did his PhD at University of Michigan under Professor Satinder Singh. 

Featured References 
 
Additional References 

Errata 
  • [Robin] I misspoke when I said in domain randomization we want the agent to "ignore" domain parameters.  What I should have said is, we want the agent to perform well within some range of domain parameters, it should be robust with respect to domain parameters. 

Creators & Guests

Host
Robin Ranjit Singh Chauhan
๐ŸŒฑ Head of Eng @AgFunder ๐Ÿง  AI:Reinforcement Learning/ML/DL/NLP๐ŸŽ™๏ธHost @TalkRLPodcast ๐Ÿ’ณ ex-@Microsoft ecomm PgmMgr ๐Ÿค– @UWaterloo CompEng ๐Ÿ‡จ๐Ÿ‡ฆ ๐Ÿ‡ฎ๐Ÿ‡ณ

What is TalkRL: The Reinforcement Learning Podcast?

TalkRL podcast is All Reinforcement Learning, All the Time.
In-depth interviews with brilliant people at the forefront of RL research and practice.
Guests from places like MILA, OpenAI, MIT, DeepMind, Berkeley, Amii, Oxford, Google Research, Brown, Waymo, Caltech, and Vector Institute.
Hosted by Robin Ranjit Singh Chauhan.